
Speech Recognition using Deep Learning

Akhilesh Halageri , Amrita Bidappa , Arjun C ,. Madan Mukund Sarathy ,. Shabana Sultana

Department of Computer Science and Engineering
The National Institute of Engineering,

Mysore,Karnataka, India

Abstract— Speech Recognition is the translation of spoken
words into text. Speech recognition involves capturing and
digitizing the sound waves, converting them to basic
language units or phonemes, constructing words from
phonemes, and contextually analyzing the words to ensure
correct spelling for words that sound alike. The main
purpose of the paper is to review the pattern matching
abilities of neural networks on speech signal.

Keywords— Speech Recognition, Neural Networks, Deep
Learning, Machine Learning, Speech-to-text.

I. INTRODUCTION

Speech recognition is the ability of a machine or program
to identify words and phrases in spoken language and
convert them to a machine-readable format. Many speech
recognition applications, such as voice dialing, simple data
entry and speech-to-text are in existence today.
Automatic speech recognition systems involve numerous
separate components drawn from many different
disciplines such as statistical pattern recognition,
communication theory, signal processing, combinatorial
mathematics, and linguistics. Speech recognition is an
alternative to traditional methods of interacting with a
computer, such as textual input through a keyboard. An
effective system can replace, or reduce the reliability on,
standard keyboard input
Attempts to build automatic speech recognition (ASR)
systems were first made in the 1950s. These early speech
recognition systems tried to apply a set of grammatical
and syntactical rules to identify speech. If the spoken
words adhered to a certain rule set, the system could
recognize the words. However, human language has
numerous exceptions to its own rules. The way words and
phrases are spoken can be vastly altered by accents,
dialects and mannerisms. Therefore, to achieve ASR we
make use of Deep Learning Algorithm.

II. REVIEW

A. Existing Method:

The existing systems for ASR use complex statistical
models. Hidden Markov Models have been very
successful. These are statistical models that output a
sequence of symbols or quantities. GMM-HMMs are used
in speech recognition because a speech signal can be
viewed as a piecewise stationary signal or a short-time
stationary signal. Another reason why GMM-HMMs are
popular is because they can be trained automatically and

are simple and computationally feasible to use. But GMM-
HMMs make various assumptions about the speech and as
a result fail to generalize.

The disadvantages are:
 It is expensive, both in terms of memory and

compute time.
 GMMs are statistically inefficient for modelling

data that lie on or near a nonlinear manifold in
the data space [1].

 The HMM needs to be trained on a set of seed
sequences and generally requires a larger seed.

 For a given set of seed sequences, there are many
possible HMMs, and choosing one can be
difficult

B. Proposed Method:

The proposed system is to use “learning” algorithms
which aim to learn the features, without any assumptions.
Recently, algorithms using neural networks have been
very successful in pattern recognition tasks - largely
owing to the increased computational power. In contrast to
GMM-HMMs, neural networks make no assumptions
about feature statistical properties and have several
qualities making them attractive recognition models for
speech recognition. When used to estimate the
probabilities of a speech feature segment, neural networks
allow discriminative training in a natural and efficient
manner. Few assumptions on the statistics of input
features are made with neural networks.
Advantages:

 Powerful.
 Self-adjusting.
 Sophisticated pattern recognition.

C. Feasibility:

 The only significant requirement of ASR systems is the
training data. The ongoing research in the field of pattern
recognition has made this data available in large amounts,
including voice data required by ASR systems.
Motivation to use deep learning in speech recognition:

 Can model high-dimensional, highly correlated
features efficiently.

 Layered architecture with non-linear operations
offers feature extraction to be integrated with
acoustic modeling.

 Better representation ability with fewer
parameters.

Akhilesh Halageri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3206-3209

www.ijcsit.com 3206

III. DESIGN & IMPLEMENTATION

Fig.3.1 Architecture Diagram

A. Preprocessing:

Fig.3.1.1 Feature Extraction

The main point to understand about speech is that the
sounds generated by a human are filtered by the shape of
the vocal tract including tongue, teeth etc. This shape
determines what sound comes out. If we can determine the
shape accurately, this should give us an accurate
representation of the phoneme being produced. The shape
of the vocal tract manifests itself in the envelope of the
short time power spectrum, and the job of MFCCs is to
accurately represent this envelope.
The features are extracted as follows:

 Frame the signal into short frames.
 Apply hamming window to make the signal

periodic[2].
 Calculate the periodogram estimate of the power

spectrum.

 Apply the mel filterbank to the power spectra,
sum the energy in each filter.

 Take the logarithm of all filterbank energies.
 Take the DCT of the log filterbank energies.
 Keep DCT coefficients 2-13, discard the rest.
 Create a context window of adjacent frames to

capture the phoneme context, further fed to
neural network.

B. Neural Networks

The basic attributes of a neural network are
 A set of processing units.
 A set of connections.
 A computing procedure.
 A training procedure.

1) Processing Units: A neural network contains a

potentially huge number of very simple processing units,
roughly analogous to neurons in the brain. All these units
operate simultaneously, supporting massive parallelism.
All computation in the system is performed by these units;
there is no other processor that oversees or coordinates
their activity. At each moment in time, each unit simply
computes a scalar function of its local inputs, and
broadcasts the result (called the activation value) to its
neighboring units. The units in a network are typically
divided into input units, which receive data from the
environment (such as raw sensory information); hidden
units, which may internally transform the data
representation; and/or output units, which represent
decisions or control signals. The sample from 0-25ms is
taken, 3 samples before that are added and three samples
after that are added to generate a 1x91 mfcc matrix. This
step is followed for all the sample frames. And, the net
samples are taken in steps of 10ms. ie. 0-25ms, 10-35ms,
20-45ms and so on. This along with the respective audio
files and the respective phoneme transcriptions are fed
into the neural network.

2) Connections: The units in a network are organized
into a given topology by a set of connections, or weights,
shown as lines in a diagram. Each weight has a real value,
typically ranging from to –∞ to +∞, although sometimes
the range is limited. The value (or strength) of a weight
describes how much influence a unit has on its neighbor; a
positive weight causes one unit to excite another, while a
negative weight causes one unit to inhibit another.
Weights are usually one-directional (from input units
towards output units), but they may be two-directional
(especially when there is no distinction between input and
output units). The values of all the weights predetermine
the network’s computational reaction to any arbitrary
input pattern; thus the weights encode the long-term
memory, or the knowledge, of the network. Weights can
change as a result of training, but they tend to change
slowly, because accumulated knowledge changes slowly.
This is in contrast to activation patterns, which are
transient functions of the current input, and so are a kind
of short-term memory.
Here, three hidden layers with 100 units each with 91input
units and 43 output units are used.

Akhilesh Halageri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3206-3209

www.ijcsit.com 3207

3) Computation: Computation always begins by
presenting an input pattern to the network, or clamping a
pattern of activation on the input units. Then the
activations of all of the remaining units are computed,
either synchronously (all at once in a parallel system) or
asynchronously (one at a time, in either randomized or
natural order), as the case may be. In unstructured
networks, this process is called spreading activation; in
layered networks, it is called forward propagation, as it
progresses from the input layer to the output layer. In
feedforward networks (i.e., networks without feedback),
the activations will stabilize as soon as the computations
reach the output layer; but in recurrent networks (i.e.,
networks with feedback), the activations may never
stabilize, but may instead follow a dynamic trajectory
through state space, as units are continuously updated.

4) Training: Training a network, in the most general
sense, means adapting its connections so that the network
exhibits the desired computational behavior for all input
patterns. The process usually involves modifying the
weights (moving the hyperplanes/hyperspheres); but
sometimes it also involves modifying the actual topology
of the network, i.e., adding or deleting connections from
the network (adding or deleting
hyperplanes/hyperspheres). In a sense, weight
modification is more general than topology modification,
since a network with abundant connections can learn to set
any of its weights to zero, which has the same effect as
deleting such weights. However, topological changes can
improve both generalization and the speed of learning, by
constraining the class of functions that the network is
capable of learning [3]. This can be controlled by
adjusting learning rate and momentum.

5) Training procedure:Perceptrons are the simplest

type of feedforward networks that use supervised learning.
A perceptron is comprised of binary threshold units
arranged into layers. Multi-layer perceptrons (MLPs) can
theoretically learn any function, but they are more
complex to train. The Delta Rule cannot be applied
directly to MLPs because there are no targets in the hidden
layer(s). However, if an MLP uses continuous rather than
discrete activation functions (i.e., sigmoids rather than
threshold functions), then it becomes possible to use
partial derivatives and the chain rule to derive the
influence of any weight on any output activation, which in
turn indicates how to modify that weight in order to
reduce the network’s error. This generalization of the
Delta Rule is known as backpropagation.
Backpropagation, an abbreviation for "backward
propagation of errors", is a common method of
training artificial neural networks used in conjunction with
an optimization method such as gradient descent. The
method calculates the gradient of a loss function with
respects to all the weights in the network. The gradient is
fed to the optimization method which in turn uses it to
update the weights, in an attempt to minimize the loss
function. Backpropagation requires that the activation

function used by the artificial neurons (or "nodes")
be differentiable.

6) Algorithm for a 3-layer network (only one hidden
layer) [4]:
initialize network weights (often small random values)
 do:
 forEach training example ex
 prediction = neural-net-output(network, ex)
 actual = teacher-output(ex)
 compute error (prediction - actual) at the output units
 compute Δωi for all weights from hidden layer to
output layer
 compute Δωi for all weights from input layer to
hidden layer
 update network weights
 until all examples classified correctly or another stopping
criterion satisfied
 return the network

After training the neural network, the input can be given to
the network which gives the phoneme sequence as the
output.

C. Word extraction from Phoneme Sequence:

The phoneme activations are fed to the word and syntax
recognition part of the recognition system, which is based
on a dynamic programming (DP) procedure to find the
best path through a phoneme network. The network
defines possible word sequences at the phoneme level.
Optional pronunciations are realized as parallel branches.
Inhalation sounds before the utterance and short silent
intervals at word boundaries are included as optional
branches in the net. Phoneme duration information is used
explicitly in the DP-algorithm to limit the search. Within
the duration limits, uniform distribution densities are
assumed. These limits are quite wide, and therefore
probably don't influence the recognition result in a
significant way. However, the algorithm is designed for
more extensive use of duration information in the future.
Simple neural networks trained on a small speech corpus
of isolated words outperformed GMM-HMM models,
efficiently mapping single isolated words to relevant text.
They can classify a dictionary of words directly without
the intermediate phoneme representation. But for
continuous speech recognition the neural network
architecture would be complex (time-delay neural nets or
recurrent neural nets) and the data required would be in
the orders of gigabytes if not terabytes.

ADVANTAGES

 Neural networks can be taught to map an input
space to any kind of output space. They are
simple and intuitive, hence they are commonly
used.

 They are naturally discriminative.
 They are modular in design, so they can be easily

combined into larger systems.
 They have a probabilistic interpretation, so they

can be easily integrated with statistical
techniques like HMMs

Akhilesh Halageri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3206-3209

www.ijcsit.com 3208

IV. CONCLUSION

One may well ask whether adequate ASR will ever truly
be accomplished. In general, one may assume that almost
all artificial intelligence (AI) tasks are potentially feasible;
certainly great progress in chess-playing machines and
robotics supports this view. Compare ASR to the task of
automatically driving a car; the latter requires intelligent
interpretation of the field of vision for cameras mounted
on a vehicle. While algorithms needed for cars would be
very different than for ASR, there are similarities in signal
processing and both challenges seem daunting (i.e.,
replacing a human driver with a similar-performing
algorithm might seem as far-fetched as having a fully
understanding ASR device). It would seem that ASR is
much closer to potential solution, however.

Future Enhancements
• SUI – Speech-based User Interfaces can be

developed.
• Greater accuracy in recognising words can be

obtained.
• Greater system control/commands can be included.
• More compatible software

REFERENCES
[1] Speech Recognition - A Deep Learning Approach, Dong Yu, Li

Deng, Microsoft Research, ISBN 978-1-4471-5779-3
[2] Think DSP Digital Signal Processing in Python, Allen B. Downey
[3] Speech Recognition using Neural Networks, Joe Tebelskis, May

1995, CMU-CS-95-142
[4] Wikipedia - en.wikipedia.org/wiki/Backpropagation

Akhilesh Halageri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3206-3209

www.ijcsit.com 3209

