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Abstract— Speech Recognition is the translation of spoken 
words into text. Speech recognition involves capturing and 
digitizing the sound waves, converting them to basic 
language units or phonemes, constructing words from 
phonemes, and contextually analyzing the words to ensure 
correct spelling for words that sound alike. The main 
purpose of the paper is to review the pattern matching 
abilities of neural networks on speech signal. 
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I. INTRODUCTION 

Speech recognition is the ability of a machine or program 
to identify words and phrases in spoken language and 
convert them to a machine-readable format. Many speech 
recognition applications, such as voice dialing, simple data 
entry and speech-to-text are in existence today.     
Automatic speech recognition systems involve numerous 
separate components drawn from many different 
disciplines such as statistical pattern recognition, 
communication theory, signal processing, combinatorial 
mathematics, and linguistics. Speech recognition is an 
alternative to traditional methods of interacting with a 
computer, such as textual input through a keyboard. An 
effective system can replace, or reduce the reliability on, 
standard keyboard input 
Attempts to build automatic speech recognition (ASR) 
systems were first made in the 1950s.  These early speech 
recognition systems tried to apply a set of grammatical 
and syntactical rules to identify speech.  If the spoken 
words adhered to a certain rule set, the system could 
recognize the words.  However, human language has 
numerous exceptions to its own rules.  The way words and 
phrases are spoken can be vastly altered by accents, 
dialects and mannerisms. Therefore, to achieve ASR we 
make use of Deep Learning Algorithm. 

II. REVIEW

A. Existing Method: 

The existing systems for ASR use complex statistical 
models. Hidden Markov Models have been very 
successful. These are statistical models that output a 
sequence of symbols or quantities. GMM-HMMs are used 
in speech recognition because a speech signal can be 
viewed as a piecewise stationary signal or a short-time 
stationary signal. Another reason why GMM-HMMs are 
popular is because they can be trained automatically and 

are simple and computationally feasible to use. But GMM-
HMMs make various assumptions about the speech and as 
a result fail to generalize. 

The disadvantages are: 
 It is expensive, both in terms of memory and

compute time.
 GMMs are statistically inefficient for modelling

data that lie on or near a nonlinear manifold in
the data space [1].

 The HMM needs to be trained on a set of seed
sequences and generally requires a larger seed.

 For a given set of seed sequences, there are many
possible HMMs, and choosing one can be
difficult

B. Proposed Method: 

The proposed system is to use “learning” algorithms 
which aim to learn the features, without any assumptions. 
Recently, algorithms using neural networks have been 
very successful in pattern recognition tasks - largely 
owing to the increased computational power. In contrast to 
GMM-HMMs, neural networks make no assumptions 
about feature statistical properties and have several 
qualities making them attractive recognition models for 
speech recognition. When used to estimate the 
probabilities of a speech feature segment, neural networks 
allow discriminative training in a natural and efficient 
manner. Few assumptions on the statistics of input 
features are made with neural networks. 
Advantages: 

 Powerful.
 Self-adjusting.
 Sophisticated pattern recognition.

C. Feasibility: 

 The only significant requirement of ASR systems is the 
training data. The ongoing research in the field of pattern 
recognition has made this data available in large amounts, 
including voice data required by ASR systems. 
Motivation to use deep learning in speech recognition: 

 Can model high-dimensional, highly correlated
features efficiently.

 Layered architecture with non-linear operations
offers feature extraction to be integrated with
acoustic modeling.

 Better representation ability with fewer
parameters.

Akhilesh Halageri et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 3206-3209

www.ijcsit.com 3206



 

 

III. DESIGN & IMPLEMENTATION 

 
 

Fig.3.1 Architecture Diagram 

 

A. Preprocessing: 

 

 
Fig.3.1.1 Feature Extraction 

 
The main point to understand about speech is that the 
sounds generated by a human are filtered by the shape of 
the vocal tract including tongue, teeth etc. This shape 
determines what sound comes out. If we can determine the 
shape accurately, this should give us an accurate 
representation of the phoneme being produced. The shape 
of the vocal tract manifests itself in the envelope of the 
short time power spectrum, and the job of MFCCs is to 
accurately represent this envelope. 
The features are extracted as follows: 

 Frame the signal into short frames. 
 Apply hamming window to make the signal 

periodic[2]. 
 Calculate the periodogram estimate of the power 

spectrum. 

 Apply the mel filterbank to the power spectra, 
sum the energy in each filter. 

 Take the logarithm of all filterbank energies. 
 Take the DCT of the log filterbank energies. 
 Keep DCT coefficients 2-13, discard the rest. 
 Create a context window of adjacent frames to 

capture the phoneme context, further fed to 
neural network. 

B. Neural Networks 

The basic attributes of a neural network are 
 A set of processing units. 
 A set of connections. 
 A computing procedure. 
 A training procedure. 

 
1)  Processing Units: A neural network contains a 

potentially huge number of very simple processing units, 
roughly analogous to neurons in the brain. All these units 
operate simultaneously, supporting massive parallelism. 
All computation in the system is performed by these units; 
there is no other processor that oversees or coordinates 
their activity. At each moment in time, each unit simply 
computes a scalar function of its local inputs, and 
broadcasts the result (called the activation value) to its 
neighboring units. The units in a network are typically 
divided into input units, which receive data from the 
environment (such as raw sensory information); hidden 
units, which may internally transform the data 
representation; and/or output units, which represent 
decisions or control signals. The sample from 0-25ms is 
taken, 3 samples before that are added and three samples 
after that are added to generate a 1x91 mfcc matrix. This 
step is followed for all the sample frames. And, the net 
samples are taken in steps of 10ms. ie. 0-25ms, 10-35ms, 
20-45ms and so on. This along with the respective audio 
files and the respective phoneme transcriptions are fed 
into the neural network. 

2)  Connections: The units in a network are organized 
into a given topology by a set of connections, or weights, 
shown as lines in a diagram. Each weight has a real value, 
typically ranging from to –∞ to +∞, although sometimes 
the range is limited. The value (or strength) of a weight 
describes how much influence a unit has on its neighbor; a 
positive weight causes one unit to excite another, while a 
negative weight causes one unit to inhibit another. 
Weights are usually one-directional (from input units 
towards output units), but they may be two-directional 
(especially when there is no distinction between input and 
output units). The values of all the weights predetermine 
the network’s computational reaction to any arbitrary 
input pattern; thus the weights encode the long-term 
memory, or the knowledge, of the network. Weights can 
change as a result of training, but they tend to change 
slowly, because accumulated knowledge changes slowly. 
This is in contrast to activation patterns, which are 
transient functions of the current input, and so are a kind 
of short-term memory. 
Here, three hidden layers with 100 units each with 91input 
units and 43 output units are used. 
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3) Computation: Computation always begins by 
presenting an input pattern to the network, or clamping a 
pattern of activation on the input units. Then the 
activations of all of the remaining units are computed, 
either synchronously (all at once in a parallel system) or 
asynchronously (one at a time, in either randomized or 
natural order), as the case may be. In unstructured 
networks, this process is called spreading activation; in 
layered networks, it is called forward propagation, as it 
progresses from the input layer to the output layer. In 
feedforward networks (i.e., networks without feedback), 
the activations will stabilize as soon as the computations 
reach the output layer; but in recurrent networks (i.e., 
networks with feedback), the activations may never 
stabilize, but may instead follow a dynamic trajectory 
through state space, as units are continuously updated. 
 

4) Training: Training a network, in the most general 
sense, means adapting its connections so that the network 
exhibits the desired computational behavior for all input 
patterns. The process usually involves modifying the 
weights (moving the hyperplanes/hyperspheres); but 
sometimes it also involves modifying the actual topology 
of the network, i.e., adding or deleting connections from 
the network (adding or deleting 
hyperplanes/hyperspheres). In a sense, weight 
modification is more general than topology modification, 
since a network with abundant connections can learn to set 
any of its weights to zero, which has the same effect as 
deleting such weights. However, topological changes can 
improve both generalization and the speed of learning, by 
constraining the class of functions that the network is 
capable of learning [3]. This can be controlled by 
adjusting learning rate and momentum. 

 
5) Training procedure:Perceptrons are the simplest 

type of feedforward networks that use supervised learning. 
A perceptron is comprised of binary threshold units 
arranged into layers. Multi-layer perceptrons (MLPs) can 
theoretically learn any function, but they are more 
complex to train. The Delta Rule cannot be applied 
directly to MLPs because there are no targets in the hidden 
layer(s). However, if an MLP uses continuous rather than 
discrete activation functions (i.e., sigmoids rather than 
threshold functions), then it becomes possible to use 
partial derivatives and the chain rule to derive the 
influence of any weight on any output activation, which in 
turn indicates how to modify that weight in order to 
reduce the network’s error. This generalization of the 
Delta Rule is known as backpropagation. 
Backpropagation, an abbreviation for "backward 
propagation of errors", is a common method of 
training artificial neural networks used in conjunction with 
an optimization method such as gradient descent. The 
method calculates the gradient of a loss function with 
respects to all the weights in the network. The gradient is 
fed to the optimization method which in turn uses it to 
update the weights, in an attempt to minimize the loss 
function. Backpropagation requires that the activation 

function used by the artificial neurons (or "nodes") 
be differentiable. 

6) Algorithm for a 3-layer network (only one hidden 
layer) [4]: 
initialize network weights (often small random values) 
  do: 
     forEach training example ex 
        prediction = neural-net-output(network, ex)  
        actual = teacher-output(ex) 
        compute error (prediction - actual) at the output units 
        compute Δωi for all weights from hidden layer to 
output layer  
        compute Δωi for all weights from input layer to 
hidden layer 
        update network weights 
  until all examples classified correctly or another stopping 
criterion satisfied 
  return the network 
 
After training the neural network, the input can be given to 
the network which gives the phoneme sequence as the 
output. 

C. Word extraction from Phoneme Sequence: 

The phoneme activations are fed to the word and syntax 
recognition part of the recognition system, which is based 
on a dynamic programming (DP) procedure to find the 
best path through a phoneme network. The network 
defines possible word sequences at the phoneme level. 
Optional pronunciations are realized as parallel branches. 
Inhalation sounds before the utterance and short silent 
intervals at word boundaries are included as optional 
branches in the net. Phoneme duration information is used 
explicitly in the DP-algorithm to limit the search. Within 
the duration limits, uniform distribution densities are 
assumed. These limits are quite wide, and therefore 
probably don't influence the recognition result in a 
significant way. However, the algorithm is designed for 
more extensive use of duration information in the future. 
Simple neural networks trained on a small speech corpus 
of isolated words outperformed GMM-HMM models, 
efficiently mapping single isolated words to relevant text. 
They can classify a dictionary of words directly without 
the intermediate phoneme representation. But for 
continuous speech recognition the neural network 
architecture would be complex (time-delay neural nets or 
recurrent neural nets) and the data required would be in 
the orders of gigabytes if not terabytes. 

ADVANTAGES 

 Neural networks can be taught to map an input 
space to any kind of output space. They are 
simple and intuitive, hence they are commonly 
used. 

 They are naturally discriminative. 
 They are modular in design, so they can be easily 

combined into larger systems. 
 They have a probabilistic interpretation, so they 

can be easily integrated with statistical 
techniques like HMMs 
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IV. CONCLUSION 

One may well ask whether adequate ASR will ever truly 
be accomplished. In general, one may assume that almost 
all artificial intelligence (AI) tasks are potentially feasible; 
certainly great progress in chess-playing machines and 
robotics supports this view. Compare ASR to the task of 
automatically driving a car; the latter requires intelligent 
interpretation of the field of vision for cameras mounted 
on a vehicle. While algorithms needed for cars would be 
very different than for ASR, there are similarities in signal 
processing and both challenges seem daunting (i.e., 
replacing a human driver with a similar-performing 
algorithm might seem as far-fetched as having a fully 
understanding ASR device). It would seem that ASR is 
much closer to potential solution, however. 
 
Future Enhancements 
• SUI – Speech-based User Interfaces can be 

developed. 
•  Greater accuracy in recognising words can be 

obtained. 
• Greater system control/commands can be included. 
• More compatible software 
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